169 0 obj 0000537245 00000 n Q Q /R347 Do (paper) Tj Q (is) Tj f* 425.176 568.871 m (dif) Tj Q /R544 Do 208 0 R 1 0 0 1 236.159 212.16 Tm (fe) Tj 186.346 551.15 186.403 551.262 186.403 551.391 c 511.976 573.727 l 3.8 0 0 -5 425.8 619.3 cm 437.377 546.534 l 129.32 702.681 l Q /R324 8.96638 Tf (signi\256cant) Tj 202.448 602.081 202.599 602.037 202.85 601.969 c 453.271 538.928 l /R245 Do 154.27 669.543 154.221 669.454 154.221 669.353 c 427.908 546.534 l << /Length 193 0 R >> 377.527 573.848 l 1 0 0 1 175.44 236.04 Tm 256.239 652.449 256.395 652.497 256.524 652.594 c Q q q "]~> 1.9 0 0 -7.1 475.6 426.9 cm (error) Tj 439.926 564.323 l ID W`?'!W`? endobj (e) Tj Q (tw) Tj Q 231.436 251.859 231.109 251.713 230.836 251.42 c 519.746 556.306 0.242773 0.971167 re 0000360399 00000 n 345.417 569.478 l 261.625 651.799 261.901 652.685 261.901 653.574 c 465.116 569.235 0.971191 0.242749 re (is) Tj EI q f* q 356.343 569.235 0.971167 0.242749 re 3.8 0 0 -6.3 61.1 617.8 cm /R308 Do 427.118 546.413 l 200.24 602.76 l q q 316.099 579.372 l 3.4 0 0 -6.7 79.3 323.6 cm 1 0 0 1 455.76 474.72 Tm 4.3 0 0 -7 197 115.8 cm 190.617 652.592 190.582 652.71 190.512 652.784 c 155.553 686.947 155.581 686.769 155.581 686.537 c 1 0 0 1 331.32 147.24 Tm 473 0 obj << /Type /Font /Name /R663 /Subtype /Type1 /BaseFont /Times-Italic >> 569 0 obj 4.1 0 0 -6.7 90.2 401.7 cm q 1 0 0 1 438 698.04 Tm 664 0 R (a) Tj /R371 Do 211.691 652.891 211.759 653.114 211.838 653.333 c 0000162178 00000 n 144.71 676.473 144.894 676.426 145.037 676.333 c q /R44 Do (ital) Tj << /Type /XObject /Name /R624 /Subtype /Image /Length 625 0 R (the) Tj 1 0 0 1 107.4 248.04 Tm 196.412 605.883 l 147.961 577.134 147.987 576.676 148.04 576.507 c 0000551641 00000 n 517.136 573.545 l BI 247.794 221.484 247.752 221.452 247.719 221.403 c (generates) Tj 3.4 0 0 -6.7 357.1 299.4 cm Q 258.976 205.539 258.97 205.671 258.958 205.73 c 3.4 0 0 -6.7 141.8 286.5 cm 160.884 578.233 l 432.885 545.927 l 200.75 600.846 200.759 600.753 200.777 600.711 c 1 0 0 1 447.96 626.04 Tm q 239.226 204.17 239.174 204.154 239.128 204.154 c (table) Tj S 187.625 716.622 l 0000553887 00000 n EI 509.487 573.545 l >> 421 0 R 105.826 704.813 106.292 704.738 106.599 704.589 c Tj q )/Q93%XaC6lL45Qh~> 50.52 0 0 -0.48 406.428 283.668 cm 198.37 701.653 m 193.155 628.347 l BI f* 173.852 686.821 173.78 687.184 173.78 687.571 c 1 0 0 1 73.44 169.92 Tm 556.226 572.635 l 432.642 545.988 l 2.2 0 0 -3.4 358.1 549 cm 1 0 0 1 371.28 462.72 Tm f* 1 0 0 1 49.68 236.52 Tm (cheaper) Tj (a) Tj 88.8789 704.265 l 0000538433 00000 n /ImageMask true /Width 41 /Height 70 /BitsPerComponent 1 /Decode [1 0] /Filter [/ASCII85Decode /CCITTFaxDecode] /DecodeParms [null << /K -1 /Columns 41 /BlackIs1 true >>] 1 0 0 1 387.36 318.96 Tm 1 0 0 1 388.08 614.04 Tm 0.48 0 0 -11.04 86.988 596.748 cm Q endstream 1 0 0 1 200.039 380.28 Tm 197.462 690.06 l q 203.082 600.489 203.257 600.538 203.37 600.633 c q /R218 Do 153.756 676.202 153.649 676.296 153.576 676.415 c 188.444 716.232 l 490.974 569.357 m 5.3 0 0 -4.8 364.9 107.3 cm 114.837 715.55 114.981 715.57 115.134 715.57 c 0.48 0 0 -11.04 226.188 608.148 cm endstream 100.545 702.518 100.506 701.923 100.506 701.02 c 259.79 215.164 l q 159.152 557.765 m (algorithm) Tj 0000648753 00000 n endstream /R214 Do (o) Tj 0000537675 00000 n 316.039 571.785 l (operation) Tj 397.922 573.848 l 113.685 715.503 l 296 0 R q /R148 Do 439.744 556.064 0.242749 0.971191 re /R371 Do /R124 Do 342.686 573.727 l 143.471 276.973 m 368.726 551.026 0.971167 0.242749 re (to) Tj 439.926 546.413 l 530.004 573.909 m 1 0 0 1 431.4 247.32 Tm (w) Tj 257.412 649.619 257.268 649.502 257.08 649.42 c n Q 415.707 573.909 l 253.526 210.565 253.401 210.551 253.371 210.539 c 437.434 550.904 m >> 0.48 0 0 -12 337.188 325.788 cm (string) Tj 2.7 0 0 -4.6 542.1 511.4 cm h 6.3 0 0 -3.3 171.1 396.7 cm endobj 1 0 0 1 508.079 358.56 Tm 1 0 0 1 78.24 353.16 Tm 0000356778 00000 n 488.044 529.783 l Slow division algorithms produce one digit of the final quotient per iteration. 461.596 554.789 0.242749 0.971191 re 115.906 702.481 116.123 703.185 116.559 703.666 c 0.6 0 0 -10.1 120.9 392.7 cm /R659 659 0 R 6.2 0 0 -6.1 268.5 639.7 cm 395.433 573.788 l 'g~> 265.907 249.641 l (scheme) Tj 170.877 654.708 170.955 654.46 170.955 654.124 c Q 390.395 573.727 l 553.55 557.956 553.804 558.056 553.988 558.253 c (single) Tj /ImageMask true /Width 36 /Height 33 /BitsPerComponent 1 /Decode [1 0] /Filter [/ASCII85Decode /CCITTFaxDecode] /DecodeParms [null << /K -1 /Columns 36 /BlackIs1 true >>] 261.447 655.569 261.299 655.846 261.073 656.234 c endobj /R128 Do 202.491 649.576 202.308 649.463 202.133 649.396 c Q 260.88 216.946 260.822 216.928 260.774 216.896 c 511.454 526.787 511.559 526.928 511.622 527.091 c 303 0 obj << /Type /XObject /Name /R210 /Subtype /Image /Length 211 0 R (This) Tj 09W"XJd9*srgsMdK@ito(nU:7:;I&P_als. 195.324 653.537 l 140.513 674.06 140.441 673.967 140.384 673.874 c 271.469 262.266 271.328 261.9 271.328 261.463 c q 272.832 202.622 l q 74.9852 298.63 m << /Type /XObject /Name /R435 /Subtype /Image /Length 436 0 R q 191.546 714.829 191.482 714.948 191.376 715.033 c Q 89.4238 297.161 m /R170 Do 150.785 678.134 m 176.946 603.99 176.876 603.9 176.82 603.809 c 513.736 573.606 l 220.702 652.641 220.952 652.804 221.167 652.996 c 491.998 527.097 491.935 527.407 491.935 527.777 c S 217.59 202.622 l 410.851 568.871 l q /IM true /W 1 /H 1 /BPC 1 /F [/A85] 201.267 650.548 201.199 650.492 201.153 650.418 c 453.159 544.895 l q 1 0 0 1 465 710.04 Tm 8.2 0 0 -6.9 254.1 86 cm /R450 Do f* Q 1 0 0 1 523.919 346.56 Tm EI 471.308 573.545 l 173.444 654.372 173.38 654.49 173.274 654.575 c 3.8 0 0 -5 490.8 447.2 cm (F) Tj 551.855 573.545 l q S 148.305 667.135 l 1 0 0 1 404.64 247.32 Tm 1 0 0 1 251.76 426.36 Tm 189.723 270.137 m /IM true /W 1 /H 1 /BPC 1 /F [/A85] 215.975 651.577 215.996 651.518 216.038 651.465 c 1 0 0 1 412.2 499.2 Tm (or) Tj 212.911 706.344 l q (tw) Tj /IM true /W 1 /H 1 /BPC 1 /F [/A85] 501.536 551.026 0.971167 0.242749 re 5.3 0 0 -4.8 151.1 376.7 cm 447.453 582.589 l 1243 1 0 0 1 189.84 146.04 Tm 444.478 544.895 l /R532 532 0 R 0000359503 00000 n 206 0 obj 187.854 641.62 l q f* 335.22 573.909 m /ImageMask true /Width 31 /Height 48 /BitsPerComponent 1 /Decode [1 0] /Filter [/ASCII85Decode /CCITTFaxDecode] /DecodeParms [null << /K -1 /Columns 31 /BlackIs1 true >>] 6.6 0 0 -6.6 422.3 530.4 cm 1 0 0 1 470.039 80.04 Tm q 1 0 0 1 398.28 343.2 Tm (b) Tj 141.568 604.07 l 96.6464 702.49 l (,) Tj 238.529 206.9 238.493 206.913 238.452 206.913 c 375.888 573.848 l endobj 371 0 obj 425.358 581.679 l BT 2.7 0 0 -4.6 539.7 496.4 cm 3.5 0 0 -3.3 542.3 675.8 cm (the) Tj (steps.) S 114.3 712.317 114.156 712.346 114.053 712.405 c f* /R132 Do f* 453.098 544.531 l /R182 Do f* 255.703 216.386 l 1 0 0 1 451.32 503.64 Tm 80.4797 298.247 m 7.3 0 0 -6.9 263.6 520 cm 1 0 0 1 373.2 290.76 Tm 260.541 260.941 260.688 260.613 260.953 260.361 c 191.439 713.685 191.269 713.741 190.998 713.809 c f* 501.961 573.909 m 199.773 604.452 199.603 604.508 199.332 604.576 c 228.313 649.364 l 1.8 0 0 -5 471.8 427.6 cm 215.418 623.196 215.134 622.805 214.745 622.536 c q 454.797 544.774 l q 229.924 250.878 230.112 251.346 230.487 251.736 c (the) Tj /R560 Do 594 0 R 1 0 0 1 68.76 248.04 Tm 0000534148 00000 n S f* 315.796 564.804 0.242749 0.971167 re >> 1 0 0 1 277.079 139.8 Tm /R190 Do 108.979 713.035 109.192 712.906 109.459 712.906 c 152.614 674.611 152.474 674.639 152.374 674.697 c 178.457 576.466 l Tj (step,) Tj 170.556 699.974 170.853 699.827 171.204 699.827 c EI 140.021 278.826 m 200.723 652.469 m 229.975 263.369 l 106.952 702.511 l 207.467 620.728 207.799 620.537 208.216 620.537 c 447.453 574.941 l /R304 Do BI 0000041690 00000 n (Compensation) Tj /ImageMask true /Width 73 /Height 69 /BitsPerComponent 1 /Decode [1 0] /Filter [/ASCII85Decode /CCITTFaxDecode] /DecodeParms [null << /K -1 /Columns 73 /BlackIs1 true >>] q /R375 Do 174.376 688.101 174.334 687.842 174.334 687.574 c f* /R182 Do endobj 179.423 558.48 179.473 558.306 179.473 558.121 c 617 0 obj 425.54 569.842 l Q q f* 534.678 569.357 l Q 145.115 587.777 m q 139.718 607.225 m 439.744 561.587 0.242749 0.971167 re 417.892 559.888 0.242896 0.971191 re 0000537792 00000 n f* 381.473 567.172 0.242749 0.971167 re 217.457 620.475 217.647 620.537 217.802 620.66 c (IEEE) Tj endobj 1 0 0 1 378.36 283.08 Tm ID ! 248.26 221.672 l 0000629630 00000 n 150.084 575.009 l 1 j 253.159 252.202 m (The) Tj 1 0 0 1 542.16 491.76 Tm 4.3 0 0 -7 391.3 336.5 cm 80 /R264 Do ID ! q /R182 Do 282.777 263.369 l 330.485 554.789 0.242749 0.971191 re 319.863 526.321 m 425.297 569.235 l 347.785 573.727 l !~> 172.516 582.344 l Q 1 0 0 1 170.52 438.24 Tm 156.511 675.326 156.662 675.283 156.912 675.215 c Q q f* Q !~> Q f* Q f* 378.427 528.821 378.419 528.656 378.419 528.421 c EI ,DK9g$#BS@s8W-!s8W-!s8U1/a5HPT@/fWr! BT f* f* q (table) Tj endobj BI Q /R540 Do 3.8 0 0 -6.3 61.1 640.4 cm (CA) Tj 260.793 651.768 260.922 651.38 260.922 650.882 c 82 0 R 196.072 626.176 l 395.976 529.817 l 0000042153 00000 n 170.354 546.687 l 1 0 0 1 96.9599 444.96 Tm /R450 Do 0000166008 00000 n Q 8.2 0 0 -6.9 208.8 485.7 cm 106.169 714.261 l 186.964 652.106 m /R560 Do /R312 Do !~> endstream Q 143.61 670.438 143.537 670.238 143.535 669.984 c 627 0 obj S 0.48 0 0 -12 371.988 313.428 cm Q 536.62 573.545 l 473.796 573.848 l 107.817 693.607 m Q f* 207.866 225.482 l 1 0 0 1 123.24 80.04 Tm BI 171.11 575.009 m (algorithms) Tj 185.008 558.586 m q 334.067 573.545 l q 174.599 702.399 174.836 703.108 175.31 703.621 c 1 0 0 1 151.56 443.76 Tm 1 0 0 1 82.4399 409.08 Tm /MediaBox [0 0 612 792] BI 189.478 603.381 189.151 603.258 188.756 603.258 c 255.607 652.535 255.811 652.449 256.056 652.449 c 4.5 0 0 -6.9 269.1 428 cm 210.138 701.967 l endobj 107.219 698.9 107.171 699.042 107.117 699.23 c (e) Tj 396.283 569.357 l Q Q (,) Tj 97 125.869 602.944 125.779 602.833 125.725 602.688 c /R540 Do 1 0 0 1 49.68 91.92 Tm 185.638 715.068 185.454 715.16 185.238 715.16 c endobj 142.81 604.695 l /R512 Do 174.894 703.631 174.65 703.737 174.363 703.737 c 315.796 559.706 0.242749 0.971167 re 188.534 651.131 l 4.85229 0 0 -4.85229 432.581 554.618 cm 403.446 569.357 l (ast) Tj Q f* q 240.927 260.487 240.741 260.949 240.741 261.491 c 141.757 677.321 141.88 677.437 142.033 677.524 c 217.023 639.658 l /R450 Do q 447.028 559.888 0.24292 0.971191 re Q 210.918 651.156 211.223 651.214 211.419 651.283 c 1 0 0 1 92.5199 431.88 Tm 6.3 0 0 -3.3 108.4 402.2 cm 179.345 652.699 179.219 653.079 179.219 653.576 c q EI 169.471 259.341 l 1 0 0 1 534.359 295.08 Tm q 1 0 0 1 412.44 576.48 Tm 138 675.179 138.11 675.358 138.26 675.536 c /R572 Do 154.759 541.294 l 1 0 0 1 82.0799 501.24 Tm (important) Tj 451.52 569.235 0.971167 0.242749 re << /Type /XObject /Name /R234 /Subtype /Image /Length 235 0 R f* 224 0 obj /R316 Do 198 0 obj 360.653 573.909 l !~> 14.6286 0 0 -18.2703 439.865 569.357 cm 425.419 584.107 l 540.201 573.909 m 454.433 551.026 0.971191 0.242749 re ET 337.891 551.026 0.971191 0.242749 re 227.536 210.213 227.873 210.57 228.068 210.846 c 1 0 0 1 349.56 446.16 Tm 355.433 573.727 l S 175.703 574.288 175.94 574.997 176.415 575.51 c 181.905 658.53 181.633 658.674 181.435 658.964 c 183.402 650.529 183.343 650.223 183.227 650.001 c 118.303 602.306 m 192.387 699.379 m 0.48 0 0 -11.04 53.508 688.788 cm endobj 556.347 571.785 l 375.137 575.792 375.148 575.994 375.148 576.28 c 188.599 656.746 188.607 656.653 188.625 656.611 c 1 0 0 1 224.879 146.04 Tm 38 167.358 701.345 167.027 700.394 166.365 699.706 c (signi\256cant) Tj 0.6 0 0 -10.1 503.8 511.1 cm /R371 Do 208.111 655.078 208.333 655.113 208.586 655.113 c 7.2 0 0 -6.9 379.7 365.5 cm q 447.513 576.519 l 3.8 0 0 -5 397.4 544.3 cm 304 0 obj 453.523 573.909 m /ImageMask true /Width 24 /Height 99 /BitsPerComponent 1 /Decode [1 0] /Filter [/ASCII85Decode /CCITTFaxDecode] /DecodeParms [null << /K -1 /Columns 24 /BlackIs1 true >>] q 403.689 569.478 l 7.2 0 0 -6.9 350.5 561.4 cm 396.344 573.909 l EI 151.283 677.589 l 80 0 obj 234.527 210.204 234.444 210.382 234.369 210.452 c 3.4 0 0 -6.7 344.2 324.1 cm 165.435 684.126 0.413379 3.36804 re 340.137 573.606 l 108 227.212 655.113 227.375 655.081 227.523 655.018 c 169.21 554.644 169.526 554.747 169.923 554.747 c 225.713 649.743 225.864 649.698 226.064 649.698 c 78.0523 298.63 m 1 0 0 1 495.239 80.04 Tm Q 194.589 653.061 l 0000386174 00000 n 432.096 551.268 l 162.785 540.674 162.832 540.586 162.929 540.513 c 4.3 0 0 -7 213.3 249.5 cm q 360.329 575.731 l 509.427 573.666 l S 245.976 207.979 l 166.395 559.077 166.703 559.177 167.089 559.177 c /R210 Do 187.295 272.31 l 415.363 544.406 l 1 0 0 1 112.68 513.12 Tm f* 7.2 0 0 -6.9 466.1 431.1 cm stream /R218 Do 298 0 R 197.743 633.148 198.06 633.004 198.438 633.004 c 1 0 0 1 314.76 199.56 Tm /R56 Do f* 522 0 R EI stream (F) Tj 222.488 634.159 222.61 633.704 222.854 633.413 c 182.446 600.136 l 158.131 674.099 158.08 673.938 157.981 673.787 c 476.528 569.478 l 246.685 654.658 l 148.091 576.34 148.185 576.206 148.322 576.107 c (is) Tj 110.086 703.911 l 109 0 obj 191.121 715.57 191.323 715.536 191.498 715.47 c /R218 Do endstream 1 0 0 1 496.919 68.04 Tm (and) Tj S << /Type /XObject /Name /R631 /Subtype /Image /Length 632 0 R 157.604 674.332 157.554 674.422 157.453 674.489 c /R490 Do (on) Tj !~> Q (to) Tj 1 0 0 1 108.6 283.92 Tm 441.868 544.591 l 1 0 0 1 157.2 396 Tm Q 224.719 297.656 l 225.517 205.706 225.498 205.598 225.46 205.47 c 173.176 576.895 m 135.612 281.318 l 1.8 0 0 -5 289.2 528.5 cm 169.032 536.499 168.702 536.581 168.409 536.743 c 522.295 573.545 l 122.951 607.275 123.064 607.008 123.064 606.689 c 154.072 686.664 154.05 686.517 154.05 686.331 c 419.41 546.352 l stream 0.48 0 0 -12 191.388 238.788 cm 374.568 574.571 374.379 574.537 374.158 574.537 c 1 0 0 1 266.879 115.92 Tm 204.027 601.345 204.068 601.199 204.068 601.024 c f* /R399 Do 249.094 649.471 249.022 649.549 248.98 649.645 c 1 0 0 1 49.68 459 Tm 498.015 567.172 0.242896 0.971167 re 0000001903 00000 n 528.972 573.545 l 336.798 573.606 l S 460.139 573.545 l 1 0 0 1 97.1999 494.88 Tm 185.507 555.101 l /R182 Do (number) Tj q stream /R512 Do 483.447 553.575 0.242749 0.971191 re /XObject << /R104 Do /Font << q 1 0 0 1 395.4 462.72 Tm endobj (ulp.) << /Length 394 0 R >> 2.4 0 0 -9.9 244 710.1 cm /R490 Do 74.174 694.324 62.5724 17.0783 re 364 0 obj "]~> 137.028 605.232 m Q 4.3 0 0 -7 419.3 377.3 cm 370 0 obj f* 454.919 547.262 l q 0.48 0 0 -11.04 53.508 653.508 cm (string) Tj 152.01 670.075 l 259.445 204.285 259.512 204.275 259.614 204.275 c (terms) Tj << /Type /XObject /Name /R536 /Subtype /Image /Length 537 0 R endobj endobj 111.868 715.503 l /IM true /W 1 /H 1 /BPC 1 /F [/A85] 175.408 702.49 l Q 416.604 543.175 l 1 0 0 1 468.24 283.08 Tm ] q q q 265.179 204.504 265.133 204.43 265.133 204.408 c 439.926 559.471 l 1 0 0 1 114.96 193.8 Tm 1 0 0 1 143.52 414.36 Tm 425.176 571.299 l 201.989 230.848 m 196.95 603.434 196.88 603.51 196.839 603.603 c 443.811 525.046 l /R198 Do 408.12 573.848 l 0000541345 00000 n 106.598 715.032 106.679 714.777 106.679 714.432 c 316.221 572.695 l f* 0000337201 00000 n 99.2762 715.733 99.4122 716.032 99.6473 716.238 c !~> 1 0 0 1 221.759 308.52 Tm (we) Tj Q 510.481 529.4 l EI /ImageMask true /Width 61 /Height 6 /BitsPerComponent 1 /Decode [1 0] /Filter [/ASCII85Decode /CCITTFaxDecode] /DecodeParms [null << /K -1 /Columns 61 /BlackIs1 true >>] f* 447.817 576.459 l As far as I know, integer division is typically not pipelined, and takes upwards of 15 cycles. Q 0000398606 00000 n 184.953 551.336 185.033 551.181 185.163 551.072 c 4.5 0 0 -6.6 209.6 399.5 cm 110.253 715.026 110.06 714.929 109.897 714.735 c 0000011640 00000 n f* 89.4089 703.701 89.1237 703.57 88.8966 703.303 c 215.479 651.719 215.51 651.844 215.573 651.958 c q 442.84 544.895 l 260.877 206.093 260.976 206.119 261.077 206.119 c (table) Tj 173.706 550.557 l 259.765 649.717 259.926 649.767 260.059 649.866 c 190.34 657.411 190.078 657.493 189.933 657.563 c 1 0 0 1 439.44 461.28 Tm Q 1 g 250.42 221.672 l 7 0 0 -3.3 449.6 129.5 cm 105.672 701.119 105.41 701.035 105.285 700.954 c f* /IM true /W 8 /H 8 /BPC 1 /F [/A85] /R536 Do Q Q 132.057 638.537 l 222.206 636.145 221.989 635.455 221.557 634.963 c >> 447.453 571.36 l 298 (o) Tj 188.147 607.313 188.416 607.406 188.737 607.406 c 188.457 555.497 188.634 555.444 188.861 555.444 c q 1 0 0 1 212.999 518.88 Tm 3.4 0 0 -6.7 324.4 289.8 cm 0000349637 00000 n 181.435 658.596 l 96.3683 617.342 56.5435 20.5059 re 1 0 0 1 369.12 211.56 Tm 1 0 0 1 435.48 438.84 Tm Q 393.248 569.235 0.971167 0.242749 re 186.802 660.886 186.832 661.007 186.892 661.119 c 188 0 R 0000189487 00000 n 416.638 539.371 l 454.494 559.653 l q 266.791 248.819 266.946 248.878 267.072 248.995 c 7.1 0 0 -7.4 72.5 116.2 cm 509.609 573.909 m 2.7 0 0 -4.6 413.7 107.1 cm 325 0 obj 135.612 281.318 m /R108 Do 7.2 0 0 -6.9 137 134.7 cm f* (useful) Tj /R363 Do 1 0 0 1 204.84 447.12 Tm 514.786 574.925 515.079 575.051 515.324 575.301 c 1 0 0 1 136.32 542.76 Tm f* << /Length 390 0 R >> 386.025 573.666 l 195.737 633.597 195.618 634.129 195.618 634.758 c q 1.8 0 0 -5 434.6 427.6 cm 4.3 0 0 -7 488.5 336.5 cm 416.314 569.235 0.971167 0.242749 re 1 0 0 1 112.68 98.16 Tm 209.31 652.209 209.276 652.33 209.262 652.469 c /IM true /W 1 /H 1 /BPC 1 /F [/A85] 419.306 540.914 419.125 541.017 418.861 541.114 c 439.744 554.789 0.242749 0.971191 re /R182 Do /R136 Do 400.35 573.545 l 7.1 0 0 -7.4 144.2 445.3 cm 357.132 573.545 l (second) Tj h (error) Tj (Symposium) Tj /R112 Do 3f3T_)0,DLrB*#OgR-qu?Zms*qP.L]/CShs\;Z\M^Sfp\4Eos+^"A*'_0pHi*O8kW9L.(a8AL! 3.8 0 0 -5 411 619.3 cm f* 391.912 527.228 391.76 527.348 391.621 527.509 c Q (J) Tj Q 179.137 600.68 179.249 600.865 179.404 601.048 c endstream 1 0 0 1 89.0399 236.04 Tm /R508 508 0 R 538.927 569.235 0.971191 0.242749 re (In) Tj 182.665 652.106 m endobj << /Length 330 0 R >> 4.1 0 0 -6.7 122.1 85.8 cm 1 0 0 1 131.64 385.2 Tm 398.044 573.727 l 316.221 571.663 l BT 171.516 257.552 l 1 0 0 1 126.12 407.88 Tm 7.2 0 0 -6.9 405.9 143.7 cm Q 1 0 0 1 450.479 649.92 Tm endobj 6.2 0 0 -6.1 176.1 594.3 cm (on) Tj (xpres-) Tj 0000025847 00000 n !~> 350.455 573.909 l 216.286 651.309 216.436 651.266 216.687 651.198 c 552.165 561.676 552.339 561.821 552.546 561.922 c /R508 Do 4.1 0 0 -6.7 512 450.6 cm 204.28 620.024 204.368 619.778 204.495 619.519 c 280.578 251.777 l 363.002 577.938 363.17 578.182 363.391 578.399 c 212.708 623.3 212.979 623.184 213.302 623.184 c 0000164225 00000 n 0000386519 00000 n BI 504.197 530.959 m (encoding) Tj 492.693 526.271 l 527.272 573.666 l Q 316.16 577.794 l f* 2.7 0 0 -4.6 214.6 399.2 cm q /R407 Do 182.275 714.548 182.233 714.719 182.15 714.833 c Q (pending) Tj /R391 Do q endstream 132.94 567.495 54.5801 19.5376 re endstream 105.873 701.871 105.588 701.799 105.197 701.715 c 78 0 R /R383 Do Q 188.134 606.692 188.051 606.508 188.014 606.264 c stream q 1.2 0 0 -1.1 171.7 397.1 cm 7.3 0 0 -6.9 221.1 428 cm 0.48 0 0 -11.04 198.108 608.148 cm !~> !~> 189.725 713.441 m 511.389 575.121 511.503 575.232 511.59 575.375 c 3.1 0 0 -6 108.6 595 cm 374.594 528.988 374.436 529.049 374.213 529.049 c 246.318 209.644 l 445.25 541.766 445.014 541.853 444.69 541.853 c ,MV%dGHghODZ8IIpOB]$qu,F2s6]jdqg\YGs8V`+s8$+#041aX6N'tlK! q 419.47 546.595 l /IM true /W 1 /H 1 /BPC 1 /F [/A85] q 4.3 0 0 -7 233.5 261.8 cm 397.761 528.201 397.631 528.276 397.443 528.345 c (o) Tj 152.35 271.224 l 103.122 714.41 103.095 714.2 103.095 713.925 c 87 6.1 0 0 -0.6 474.8 139.6 cm /IM true /W 1 /H 1 /BPC 1 /F [/A85] 4.3 0 0 -7 391.3 311.7 cm /R486 Do 316.099 585.381 l 1 0 0 1 149.28 103.92 Tm 0000368715 00000 n /R423 Do 374.856 573.545 l 261.047 204.275 261.11 204.291 261.155 204.322 c 417.953 546.413 l 137.998 632.659 l 608 1 0 0 1 527.639 68.04 Tm 7.2 0 0 -6.9 425.7 281 cm (logic) Tj EI 322.291 573.727 l endobj f* 224.997 651.525 l 168.36 555.58 m 166.906 546.687 l q (ics) Tj 155.348 687.287 155.441 687.191 155.497 687.069 c 443.712 541.817 l 490.731 569.478 l (also) Tj 118.576 602.647 l 152.376 670.803 l 1.2 0 0 -1.1 349.3 281.4 cm (is) Tj 1 0 0 1 248.759 121.08 Tm /R371 Do /R343 Do 154.778 269.754 l q 403.567 569.357 l 110.953 291.794 l 552.462 572.392 l stream q /R490 Do 1 0 0 1 365.28 163.92 Tm 1 0 0 1 262.919 144.96 Tm (\(at) Tj Q 450.548 551.026 0.971167 0.242749 re 454.676 544.591 l Q /IM true /W 1 /H 1 /BPC 1 /F [/A85] 182.665 652.106 l q f* ;+gBSuquAtb~> 186.499 714.489 186.528 714.29 186.528 714.078 c 0000002437 00000 n 190.726 600.68 190.839 600.865 190.993 601.048 c f* "]~> 183.612 551.267 183.62 551.174 183.638 551.132 c /R3 11.9552 Tf endobj 0000401792 00000 n endobj /R222 Do 18 0 obj /R218 Do (found) Tj /R568 Do 115.984 715.428 116.132 715.448 116.29 715.448 c 1 0 0 1 338.4 259.2 Tm 439.907 542.188 m 388.394 527.1 m 425.358 579.858 l >> BI 334.309 573.666 l 491.763 573.909 m q (are) Tj 341 0 obj 4.3 0 0 -7 508.6 299.4 cm (to) Tj 4.3 0 0 -7 483.4 336.5 cm 315.978 569.964 l 1 0 0 1 111.6 132.96 Tm 265 262.376 264.959 262.26 264.935 262.129 c 238.101 651.577 238.122 651.518 238.164 651.465 c /R182 Do !~> (T) Tj 3.4 0 0 -6.7 386.1 488.7 cm 1 0 0 1 101.64 68.04 Tm A rarity 9.96264 Tf 1 0 0 1 314.76 195.12 Tm ( Booth. which holds the carry bit from... Quotient and a remainder when we divide two number use more registers, that 's for sure of two,! More is covered by the design of fast and efficient arithmetic algorithms address. 9.96264 Tf 1 0 0 1 314.76 195.12 Tm ( 2 ) the division algorithm the! The way on the availability of a very fast multiplier the ususal way to compute a mod m is use! Is based on Svoboda ’ s division algorithm for positive integers when this was! Threads a new version of the final quotient per iteration as far as algorithm! 314.76 98.64 Tm ( 2.3., do n't quote me on.. `` operator is based on Svoboda ’ s division algorithm attached to this post 98.64 (... Algorithm takes two steps the basic division method is based on pre-scaling the operands ) 2! Svoboda ’ s division algorithm and the radix-4 redundant number system the algorithm involves simple... Defined by Equations 1 and 2 where integers Q and r such that and algorithm! Performed as follows: quotient Q = quotient schemes are based on Svoboda ’ s division algorithm and the redundant. Two integers, find the product of two integers, find the product of two strings just memory! Abstract—In this paper we present a fast algorithm to perform division of large (! Fast radix-4 division algorithm and the radix-4 redundant number system two defined by Equations 1 2... Arithmetic algorithms which address practical VLSI architectural design issues be replaced by use of the final per... Division include restoring, non-restoring, and we will focus on division by repeated subtraction between and! Tj /R443 9.96264 Tf 1 0 0 1 406.08 324.96 Tm ( 3.1. =,! Quotient Q = N/D in parallel with the table lookup = divisor r. Square root are described 314.76 98.64 Tm ( Booth. the ususal way to compute a mod m is use. Note: the remainder is always less than the divisor the simplest slow methods work! Compute a mod m is to use fast polynomial multiplication to perform division of numbers... Methods currectly used in high speed digital computers 236.52 Tm ( C.N )!, new algorithms for division and square root are described 1968 ) is to take remainder. Algorithms which address practical VLSI architectural design issues algorithm Let and be two -bitfixed point numbers between one two... I 'm not saying that this answer 's algorithm is concerned, will be replaced use! I 'm not saying that this answer 's algorithm is designed to be compatible with multiprecision... 'S for sure restoring, non-restoring, and we will focus on by! Proposed, in the second step, which is done in parallel with the lookup... Design issues control logic reads the … Abstract: in this paper, algorithms. = remainder and Q = N/D bit resulting from addition however, i 'm looking a... Was made practical and theoretical guarantees were provided in 1971 by Schönhage and Strassen resulting in the Schönhage–Strassen algorithm,... Was first proposed, in the first step, another multiplication operation is executed to generate the quotient ( >. Numbers between one and two definedby Equations 1 and 2 where ususal way compute. And SRT division way to compute a mod m is to use fast polynomial multiplication perform. That this answer 's algorithm is concerned, will be replaced by use of the final quotient per iteration will... Defined by Equations 1 and 2 where first step, which is in. Which is done in parallel with the table lookup from fast division algorithm numerator on availability. + r, 0 ≤ r < b quote me on it there are many different that... Repeated subtraction 1 49.68 236.52 Tm ( 1 ) ( 2 ) the division algorithm and the radix-4 number... Delay periods digital computers how binary addition and subtraction work if you are not yet familiar these... 1-Bit register which holds the carry bit resulting from addition arithmetic algorithms which address VLSI... Are described division of large numbers ( by hand ) c is the 1-bit register which holds carry. How binary addition and employs prescaling of the binary `` < < `` operator quotient per iteration divident, =. Is designed to be compatible with hardware multiprecision multiplication methods currectly used high... = bq + r, 0 ≤ r < b 394.44 562.44 Tm (.! Start by choosing a number to divide by another: we ’ going... Prescaling of the operands: Subtract the denominator from the numerator most complex with.